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Abstract of the Dissertation

Quanto option pricing: A joint framework for

tempered stable processes and stochastic correlation

by

Hyangju Kim

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2021

We propose a joint framework combining tempered stable processes

with stochastic correlation for quanto option pricing. Most option pric-

ing practices are based on the normal distribution and constant correla-

tion assumptions, thus prone to implied volatility skew and time-varying

correlation. To address this discrepancy with the real financial market at-
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tributed to the rigid assumptions, we combine two key processes; the nor-

mal tempered stable (NTS) process for the underlying dynamics and the

Ornstein-Uhlenbeck (OU) process for stochastic correlation to accurately

predict quanto option pricing. We label this as the NTS-OU model, in

which we compare the results to the NTS model with constant correla-

tion and the classic Black-Scholes model. For its empirical application, we

examine the European quanto option valuation and derive its closed-form

solution under the risk-neutral measure. We estimate the model perfor-

mance through two quanto contracts in different market regimes; a quanto

option with S&P 500 index and Euro-US dollar exchange rate, and a quanto

option with Dow Jones Industrial Average and Bitcoin-US dollar exchange

rate. In both examples, the NTS-OU model gives the best estimates due to

its flexibility. Building on our experimental findings, we also identify that

the stochastic correlation exists in the risk-neutral world.
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1 Introduction

A quanto option, also referred to as a foreign-equity option, is a cross-

currency derivative that the underlying asset is presented in one currency,

but settled in a second currency with a pre-determined exchange rate at

maturity. As cross-border investments expand,1 the quanto option receives

growing attention from investors seeking to invest in foreign assets with-

out any exposure to currency risk. Indeed, the traditional vanilla quanto

derivatives are traded in a significant volume through the over-the-counter

market (see Jäckel (2016)).

Accompanying this growth in the market, many studies have been de-

veloped pricing models for quanto option. While a quanto option is a conve-

nient financial instrument to eliminate the currency risk, its option premium

is not simply to be determined. This is so because the quanto option pric-

ing depends on not only the two underlying assets - the asset price and the

foreign exchange rate - but their correlation as well.

The previous approach for quanto option pricing is based on the two-

dimensional Black-Scholes (BS) framework (Black and Scholes (1973)) which

assumes that the two underlying asset returns follow the lognormal distribu-

tion, and the correlation between underlying assets is constant (cf. Black

et al. (1990), Baxter et al. (1996) and Duan and Wei (1999)). However,

many studies have pointed out that the BS model fails to explain the two

important empirical phenomena: (1) volatility smile and (2) stochastic cor-

relation (see Carr and Wu (2004) and Rachev et al. (2005)).

1According to the data from SIFMA, the capital market size of United States investing
in foreign securities increased by 9.3% from 2018 to $36.9 trillion in 2019. Meanwhile,
foreign gross investment in United States securities climbed up 12.7% to $82.1 trillion in
2019.
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After Black Monday in 1987, the recognition of the volatility smile has

directly motivated studies to investigate the effect of a discrepancy between

the BS model and the nature of the real market. The volatility smile reflects

a smile pattern shown when implied volatility is plotted against strike prices.

However, the assumption of the lognormal distribution of the asset returns

leads to constant volatility instead of a ‘skewed’ smile. This distortion

arises because the empirical distribution of the underlying asset returns

exhibits heavy tails, and skewness; the lognormal distribution displays the

symmetric and rapidly decaying tails which is not consistent with these

stylized facts (cf. Rachev and Mittnik (2000) and Mittnik et al. (2000a)).

Hence, the BS model undervalues out-of-the-money options, whereas in-

the-money options and at-the-money options are assessed at a higher price

to compensate for it.

Many subsequent models have been proposed to tackle this volatility

smile phenomenon and one milestone approach is replacing the lognormal

distribution with the tempered stable (TS) distribution. The tails of the

TS distribution are ‘tempered’, so it shows heavier tails than the normal

distribution. In addition to this, its parameters also capture the skewness

as well as the mean and the variance. Because of this flexibility, the TS

distribution better explains the realities of real-world movement of the un-

derlying asset returns and, thus, it became the most suitable alternative to

price derivatives.

The TS distribution was firstly introduced by Koponen as “truncated

Lévy flights” (Koponen (1995)). Later, its extensions are suggested as:“KoBoL”

(Boyarchenko and Levendorskii (2000)),“CGMY” (Carr et al. (2002)), “KR”

(Kim et al. (2008) and Kim et al. (2009)), “Modified Tempered Stable”

(Kim (2005) and Kim et al. (2006)), and “Smoothly Truncated Stable”

2
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(Menn and Rachev (2009)). The TS distribution has six types of a well-

known subclass, and we employ the normal tempered stable (NTS) distri-

bution for our study.

The NTS distribution is proposed by Barndorff-Nielson and Shepard

(Barndorff-Nielsen et al. (2001)), and it defines a time-changed Brownian

motion with a tempered stable subordinator. Basically, the NTS distribu-

tion evaluates the Brownian motion at a random time instead of physical

time (or real-time). The random time is referred to as the subordinator

or intrinsic time process. More specifically, it is constructed by an expo-

nential tilting of Lévy measure, and the procedure of tilting is from the

Esscher transform (Gerber and Shiu (1994)). Since the NTS distribution is

developed aiming for more flexible modeling possibilities that capture the

observed features in the real world, in terms of this, the NTS distribution

has an obvious benefit over the normal distribution.

However, the studies on the quanto option based on the NTS distribu-

tion have been relatively sparse. The first work beyond the BS framework is

Huang and Hung (2005) which applied the Lévy process for quanto option

pricing. Recently, Kim et al. (2015) formulated a NTS-based pricing model

and derived its closed-form solution. Still, the correlation between the two

underlying processes remained constant in this model. The motivation of

our study is to expand the constant correlation as the stochastic correlation

under the NTS framework to address the second drawback of the BS model

as we discussed.

It is a well-documented fact that the stochastic correlation plays a key

role in the pricing of multi-asset financial instruments (Teng et al. (2015)).

However, much of the studies assume it as constant due to its computational

ease despite its importance. Indeed, using a constant correlation could

3
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encounter two critical problems from practitioner’s view: (1) Estimating

a correlation is largely affected by the timeframe. Hence, deciding the

timeframe in practice can be a tricky problem and it may mislead the true

estimates, which can be more noticeable when the market is in distress

and needs the correct estimates most. (2) The implied correlation derived

from the market data is not consistent with the realized correlation and this

implies the non-zero correlation risk premium (see Ma (2009) and Linders

and Schoutens (2014)).

In our study, we utilize the Ornstein-Uhlenbeck (OU) process to de-

scribe the stochastic correlation. The OU process is a stationary Gauss-

Markov process, and has two useful properties that make the OU process

easy to work with; the mean-reverting and the positive definite variance-

covariance matrix. For this reason, the OU process has gained popularity

to describe the stochastic correlation.

In the following, we establish a general framework for quanto option

pricing by incorporating the NTS process and the OU process. We assume

that the dynamics of underlying assets are governed by a NTS process, and

the stochastic correlation between underlying assets is described by the OU

process. We name this model the NTS-OU. We also derive its closed-form

solution under the risk-neutral measure. As a general framework, the NTS-

OU model encompasses the BS model and the previous NTS framework with

constant correlation. To change physical measure to risk-neutral measure

Q, we apply the Girsanov’s Theorem (cf. Theorem 10.8, Klebaner (2005))

and find the Radon-Nikodym derivative.

For our empirical illustration, we set up two quanto option contracts to

show that the NTS-OU model works in the two different market regimes:

(1) a quanto contract with the S$P 500 index and the Euro-US Dollar

4
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(EUR-USD) exchange rate and (2) a quanto option with the Dow Jones

Industrial Average index with the Bitcoin-US Dollar (BTC-USD) exchange

rate. The calibration results show that the NTS-OU model provides the

best estimates for the option price compared to the BS model or the NTS

model with constant correlation. This is supported by the lowest RMSE,

AAE, and APE. Also, another important inference is that we confirm the

existence of stochastic correlation in the risk-neutral world based on the

comparison with the NTS model with constant correlation and the NTS-

OU model.

The study of Bitcoin quanto contract is more interesting in particular

because the derivatives market is expanding for cryptocurrencies recently.

In July 2020, the EQUOS is set to be the first US publicly trading exchange

for cryptocurrencies with further plans to list perpetual swaps, futures, op-

tions, and other derivatives products soon. In addition to this, the trading

volume of the cryptocurrency derivatives for the second quarter of 2020

was $2.159 trillion, a 2.57% increase from the first quarter according to

Tokeninsight. Statistics around the cryptocurrency derivatives market in-

dicate that the market keeps growing at an exponential rate. With this new

era coming, the NTS-OU model can facilitate the use of the cryptocurrency

quanto option by providing the most accurate price. As we examine in the

empirical part, the NTS and the OU assumptions allow us to capture the

volatile movement of cryptocurrency the best.

This paper is organized as follows. In section 2, we revisit the prelimi-

nary properties of the NTS process and the OU process. Section 3 describes

the NTS-OU framework, and applies this framework to quanto option pric-

ing in Section 4. Empirical study is presented in Section 5. Section 6 offers

a conclusion.

5



www.manaraa.com

2 Preliminaries

Before we proceed to the construction of our quanto option pricing

model, we revisit important stochastic processes and numerical calculation

techniques that are used for our study: the Lévy process, the TS process,

the NTS process, the OU process, and the fast Fourier transform (FFT)

method.

In this section, we explore the definition and properties of each process

as well as the relationship of the processes. We begin with the definition

of the Lévy process and discuss the empirical facts that the Lévy process is

capable of characterizing. We also present the variety of subclasses within

the definition of the Lévy process mainly focusing on the TS process. By ex-

ploring its well-known subclasses, we illustrate how rich a class of processes

they form.

We note that the NTS-OU model is constructed by incorporating the

NTS and the OU processes. The NTS process models the marginal dis-

tribution capturing empirical properties such as jumps, heavy tails, and

skewness. The OU process describes the stochastic correlation between

the underlying asset and the exchange rate by assuming the correlation to

follow a stationary Markov process. With these two processes, we derive

their analytical formula for the quanto option pricing under the risk-neutral

measure, Q.

2.1 Lévy process

The Lévy process is a continuous stochastic process named after Paul

Lévy who first introduced the class of non-Gaussian stable distributions.

The Lévy process has played an instrumental role in probability theory and

6
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financial modeling due to its properties; independent increments, station-

ary increments, infinite divisibility, and finite moments. These properties

are advantageous in describing the dynamics of asset return which exhibits

jumps, heavy tails, and skewness. The Gaussian process utilizes only two

parameters, for this reason, it has a clear limitation to describe the true

behavior of the real market. As a result, the Lévy process with more flexi-

bility has emerged as the alternative, Mandelbrot (1963) introduced the first

application of the Lévy process for the asset price process. Much of the sub-

sequent studies has been proposed for more general reference of Lévy process

by Bertoin (1996), Ken-Iti (1999), and Cont and Tankov (2004).

Before we continue with the discussion of and the construction of the

Lévy process, we define the Lévy process first.

Definition 1 (Lévy Process). A stochastic process X = {Xt}t≥0 is said to

be a Lévy process if the following conditions are satisfied:

1. X(0) = 0, a.s.

2. X has independent increments.

3. X has stationary increments.

4. X is right continuous with left limits.

5. X is stochastically continuous, ∀t ≥ 0 and a > 0,

lim
s→t

P [|Xs −Xt| > a] = 0.

The characteristic function of a Lévy process is written by the Lévy -

Khintchine formula (also can be applied to the general infinitely divisible

7
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distributions):

exp

(
iγu− 1

2
σ2u2 +

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
. (2.1)

In the formula, the ν is called as the Lévy measure which is one of a

Borel measure if ν(0) = 0 and
∫
R(1
∧
|x2|)ν(dx) < ∞. The triplet (σ2, ν,

γ) is referred to as a Lévy triplet where σ, ν ∈ R, and σ ≥ 0. The derivation

of this formula is given in Ken-Iti (1999). We note that a infinitely divisible

distributions was proposed by Kolmogorov in case of the second moments

of the Lévy –Khintchine formula.

Meanwhile, the Lévy process can be divided into two main parts; a

Brownian motion and a pure jump rocess (Zt)t≥0. That is

Xt = σWt + Zt (2.2)

and using this formula, we can obtain the characteristic function of Lévy process

Xt as follows:

φXt(u) = φσWt(u)φZt(u)

= exp

(
− t

2
σ2u2

)
exp

(
iγut+ t

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)

= exp

(
iγut− t

2
σ2u2 + t

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
(2.3)

where φσWt(u) is the characteristic function of N(0, σ2t) and φZt(u) is the

8
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Figure 1: A sample path of a Poisson process with λ = 3. With the same
mean, three different paths are shown.

characteristic function of the pure jump process, that is

φZt(u) = exp

(
iγut+ t

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
. (2.4)

As we can see in equation 2.2, the standard Brownian motion and pure

jump processes all belong to the Lévy process. Now, we proceed to discuss

some well-known examples of the Lévy process which give us the impression

of how varied the class of Lévy process really is and how the properties of

the Lévy process contribute to capturing the stylized facts of the nature of

the real market movement.

2.1.1 Poisson process

A process valued on the non-negative integers N = (Nt)t≥0 defined on

a probability space (ω,F ,P) is referred to as a Poisson process with intense

9
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parameter λ as follows:

1. N0 = 0

2. N has independent and stationary increments.

3. For s ≥ 0 and h ≥ 0, Nt+h −Nt is a Poisson distributed random

variable with parameter λh if satisfy,

P(Nt+h −Nt = n) = e−λh
(λh)n

n!
.

The characteristic function of the Poisson process is given by

φNt(u) = E(eiuNt) = eλt(1−e
iu). (2.5)

The Poisson process is a fundamental building block of pure jump process

which is a main component of the Lévy process in equation 2.2.

2.1.2 Pure jump process

A process Xx = (Xx
t )t≥0 for a real number x follows

(Xx
t ) = xN

λ(x)
t

and (N
λ(x)
t )t≥0 is the Poisson process with parameter λ(x). x is a given

number which means the jump size, and the intensity parameter λ(x) is the

expected number of jumps in the unit time interval.

Using this notation, we construct a process Yt is defined by

Yt = γt+
∞∑
j=1

X
xj
t .

Recall that Xx
t follows the Poisson process, the characteristic function of

10
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Xx
t is written in the form of 2.5, and that is,

φXx
t
(u) = exp

(
λ(x)t(eiux − 1)

)
. (2.6)

By plugging the notation of Yt into equation 2.6, we derive the characteristic

function of Yt as follows:

φYt = exp

iγut+ t
∞∑
j=1

λ(xj)(e
iuxj − 1)

 .

Now, we assume that the jump size can be any real number. Under this

assumption, we can denote the expected number of jump size as ν([a, b]),

and we rewrite the characterisric function of Yt,

φYt = exp

(
iγut+ t

∫ ∞
−∞

(eiux − 1)ν(dx)

)
(2.7)

where γ ∈ R and we call the measure ν as a Lévy measure. So far, we call

the process of Yt is a jump process.

However, there is a major drawback for the equation 2.7; infinite varia-

tion of process cannot be embedded in this framework. To take account for

this property, we define another process Zt which the characteristic function

is given by

φZt = exp

(
iγut+ t

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
(2.8)

and finally we obtain the pure jump process. We note that the pure

jump process is the modification of the Poisson process. Hence, it inherits

the properties of the Poisson process as well.

11
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The pure jump process has many subclasses in it, for example, gamma

process, inverse Gaussian process, variance gamma process, α-stable pro-

cess, TS process, and so on. We briefly point out the definition and the

properties of the TS process in the next section.

2.1.3 TS process

A Tempered stable processes were introduced as the truncated Lévy flight

(Koponen (1995)) model in physics literature, and later, it is applied to

model stochastic volatility, for example, the CGMY model (see Carr et al.

(2002) and Carr et al. (2003)), or the Ornstein-Uhlenbeck–based model

(see Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen et al.

(2001)).

The construction of the tempered stable processes is mixing up the

α–stable process and the Gaussian trends. Hence, in a short-term view, it

approaches to an α–stable process while in a long-term view, it close to a

Brownian motion (see Rosiński (2007)). In addition to this, the TS distri-

bution is obtained by ‘tempering’ the tails, so it represents the heavier tails

than the normal distribution. The Skewness and jumps are also described

by flexible shape of the TS process.

The TS process has largely six subclass such as the classical tem-

pered stable (CTS) process, the generalized tempered stable (GTS) process,

the modified tempered stable (MTS) process, the normal tempered stable

(NTS) process, the normal inverse Gaussian (NIG) process, the Kim-Rachev

tempered stable (KRTS) process, and the rapidly decreasing tempered sta-

ble (RDTS) process. We employ the NTS process in particular to build our

model.

12
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2.1.4 Time-changed Brownian motion

The Brownian motion is well-known stochastic process in Finance. We

start with the definition of the Brownian motion.

Definition 2 (Brownian Motion). A standard Brownian motion W =

(Wt)t≥0 is satisfying the conditions as follows:

1. W0 = 0

2. W has independent and stationary increments.

3. The increments of Wt+h −Wt follows the normal random variable with

mean zero and variance h.

4. The paths are continuous.

Now, we consider a pure jump process T = (Tt)t≥0 which present nonde-

creasing trajectory, then the process T can be utilized to represent a trading

executed time instead of physical time. (see Mittnik et al. (2000b)). In this

case, the process T is called as the subordinator or intrinsic time process.

If we consider an arithmetic Brownian motion and set the subordinator

instead of the physical time, we obtain define the time-changed Brownian

motion as follows:

Xt = µTt + σWTt .

The characteristic function of the time-changed Brownian motion is given

by

φXt(u) = φTt

(
µu+

iu2σ2

2

)
. (2.9)

Based on the contribution of Monroe (1978), we know that every semi-

martingale can be written as a form of the time-changed Brownian mo-

tion. Moreoever, theoretically, every Lévy processes can be represented as

13
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Time-changed Brownian Motion (see Clark (1973)). This property of the

Lévy process makes the best alternative process to describe the true dy-

namics of the market.

One drawback is that it is not easy to represent the time-change explic-

itly. To address this problem, many subsequent models are suggested and

the best known is the CGMY process introduced by Carr et al. (2002) and

the Meixner process which is proposed by Grigelionis (1999) and Schoutens

(2002). Recently, Madan and Yor (2006) described the CGMY and Meixner

processes as time changed Brownian motions from.

2.2 NTS process

Let α ∈ (0, 2), θ, σ > 0, and µ, β ∈ R. The NTS random variable X

with parameters (α, θ, β, σ, µ) is defined as

X = µ− β + βT + σ
√
TW,

where W ∼ N(0, 1), T is a positive, non-decreasing random variable called

tempered stable subordinator with its characteristic function φT being

φT (u) = exp

(
−2θ1−α

2

α
((θ − iu)

α
2 − θ

α
2 )

)
.

Now finally, the characteristics function of X is given by

φNTS(u) = E[eiuX ] = exp

(µ− β)iu− 2θ1−α
2

α

(θ − iβu+
σ2u2

2

)α
2

− θ
α
2


 .

(2.10)

N -dimensional NTS process has the following parameters: α ∈ (0, 2),

14
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θ > 0, µ = (µ1, µ2, · · · , µN)T ∈ RN , β = (β1, β2, · · · , βN)T ∈ RN and σ =

(σ1, σ2, · · · , σN)T with σn > 0, for all n ∈ 1, 2, · · · , N . R = [ρm,n]{m,n∈1,2,··· ,N}

is a dispersion matrix and R
1
2 given by factorization R = R

1
2 (R

1
2 )T such as a

Cholesky factorization. Note that α determines fat-tailedness and peaked-

ness as well as the jump intensity where α ∈ [1, 2) implies infinite variation

and α ∈ (0, 1) implying finite variation. θ is the tempering and scaling

parameter for the subordinator, µ is the drift of the NTS process.

Let (T (t))t≥0 be the tempered stable subordinator generated by the in-

finitely divisible T and (W (t))t≥0 be an independent N -dimensional Brow-

nian motion independent of the subordinator. Then an N -dimensional pro-

cess (X(t))t≥0 follows the multivariate NTS if

X(t) = µt+ β(T (t)− t) + diag(σ)R
1
2W (T (t)), t ≥ 0

and denoted by X ∼ NTSN(α, θ, µ, β, σ, R). For each n ∈ {1, 2, · · · , N},

the characteristic function defining its marginal distribution of Xn is

φXn(t)(u) = exp

(µn − βn)iut− 2tθ1−α
2

α

(θ − βniu+
σ2
nu

2

2

)α
2

− θ
α
2


 ,

and the expectation of this is given as E[Xn(t)] = µnt and the covariance

is

cov(Xm(t), Xn(t)) = σmσnρm,nt+ βmβnt

(
2− α

2θ

)
. (2.11)

Note that, the characteristic function is also analytically specified in the

complex field which implicates that if ξ ∈ In, then φXn(t)(ξ) is well defined.

In =

{
z ∈ C : − 1

σ2
n

(
βn +

√
β2
n + 2σ2

nθ
)
≤ Im(z) ≤ 1

σ2
n

(√
β2
n + 2σ2

nθ − βn
)}

.
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2.3 OU process

We model the stochastic dependency with the OU process. The OU

model is the Gauss-Markov process, and also it is a continuous case of

the AR(1) model. The OU process has bounded variance and stationary

probability distribution as opposed to the Wiener process which is not a

stationary process. This comes from the fact that the Wiener process has a

constant drift term, whereas the OU process has a drift that is dependent on

its current level of the process. In other words, if the value of the process is

less than the long term mean, the drift gradually moves towards a positive

direction and vice versa. This gives the process the mean-reverting property

which is important to describe the stochastic correlation.

Let θ be the long-term mean, κ be the reverting speed of the process,

and σ be the volatility of the stochastic process. A stochastic process X(t)

follows the OU process if the dynamic is as below:

dX(t) = −κ(X(t) − θ)dt+ σdW (t);

where W (t) is a standard Brownian motion. For our study, in particular,

we assume the long-term mean θ is zero and the correlation movement in

Q-measure is explained by the drift and the Brownian motion part.

2.4 Fourier transform and characteristic function

For a given function f(x), its Fourier transform is defined as

Φ(ν) =

∫ ∞
−∞

eiνxf(x)dx.
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This is transforming a given function into the frequency space where the

function gets decomposed into harmonic functions. The Fourier transform

of a function, Φ(ν), can then easily be recovered by the inverse Fourier

transform,

f(x) =
1

2φ

∫ ∞
−∞

e−iνxΦ(ν)dν.

If f(x) is a given probability density function (pdf) of a random variable x,

this Fourier transform of the pdf is called characteristic function,

Φ(ν) =

∫ ∞
−∞

eiνxf(x)dx

= E(eiνx),

and as explained pdf f(x) can be recovered from its characteristic function.

Characteristic functions can be used to calculate the moments of a

given distribution function. The number of moments of that distribution

can be calculated as follows. Suppose we have the characteristic function

of a random variable X as

φ(u) = E[eiuX ].

By calculating the nth derivative of φ(u) we can get the following expression

φ(n)(u) = E[(iX)neiuX ].
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Now to find its moments, we can plug in zero for u and obtain,

φn(0) = E
[
(iX)nei(0)X

]
= E

[
(iX)n

]
= inE [Xn] .

Therefore,

E[Xn] = i−nφn(0).

For example, if the first moment of X, i.e. the mean, is to be calculated

then:

E[X] = −iφ′(0).

Now we examine one example to understand how a characteristic func-

tion is being calculated given a pdf. We use standard normal distribution

as an example. One of the most widely known and important distribution

is the standard normal distribution. This is used in many applications in-

cluding various spaces in the financial industry. Albeit it’s disadvantage

of not capturing skew and tailedness, it is the building block of diffusion

process and thus is absolutely central to most of the theories.

If Z ∼ N (0, 1), then its characteristic function is calculated as

ΦZ(ν) = E(eiνZ) =

∫ ∞
−∞

1√
2π

exp

(
iνz − 1

2
z2

)
dz.

Now note that,

E(esZ) =

∫ ∞
−∞

1√
2π

exp

(
sz − 1

2
z2

)
dz.
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Calculate the integrand as follows

∫ ∞
−∞

1√
2π

exp

(
sz − 1

2
z2

)
dz =

∫ ∞
−∞

1√
2π

exp

(
−1

2
(z2 − 2sz)

)
dz

=

∫ ∞
−∞

1√
2π

exp

(
−1

2
(z − s)2 +

1

2
s2

)
dz

=
1√
2π
e

1
2
s2
∫ ∞
−∞

exp

(
−1

2
(z − s)2

)
dz,

now as the following holds:

∫ ∞
−∞

e−
1
2
u2du =

√
2π,

we can get

E(esZ) = exp

(
s2

2

)
.

By substituting iν for s we can get

ΦZ(ν) = E(eiνZ) = e−
ν2

2 .

3 NTS processes with stochastic correlation

In this section, we extend the NTS framework with the stochastic corre-

lation. We apply Girsanov’s theorem to change measure from the physical

measure P to the risk-neutral measure Q. Subsequently, we look into a bi-

variate case as a quanto option has two underlying risk factors and derives

its characteristic function that is directly leveraged into the pricing.

We follow the same notation used in the previous section 2.2 with R

being time-dependent, R = (R(t))t≥0. Let T (t) be a tempered stable subor-

dinator and (W (t))t≥0 be an independent N -dimensional Brownian motion.
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Let process (τ(t))t≥0 satisfy T (t) =
∫ t

0
τ(u)du, for all t ≥ 0. Then the

processes become the following

X(t) = µt+β

∫ t

0

(τ(u)−1)du+ diag(σ)

∫ t

0

R1/2(T (u))
√
τ(u)dW (u) (3.1)

and denoted by X ∼ NTSOU(α, θ, µ, β, σ, R). Note that the explicit dy-

namics of our choice for the correlation is not yet specified and this is

will be discussed in section 4.3 with the exact pricing formula. For each

n ∈ {1, 2, · · · , N}, the characteristic function defining its marginal distri-

bution of Xn is

φXn(t)(u) = exp

(µn − βn)iut− 2tθ1−α
2

α

(θ − βniu+
σ2
nu

2

2

)α
2

− θ
α
2




and the expectation of this is given as E[Xn(t)] = µnt and the covariance

is

cov(Xm(t), Xn(t)) = σmσnE

[∫ T (t)

0

ρm,n(s)ds

]
+ βmβnt

(
2− α

2θ

)
. (3.2)

In addition, it is important to note that a weighted sum of the NTS-OU

processes again follows the NTS-OU distribution as the following proposi-

tion states.

Proposition 1. Let w = (w1, w2, ..., wN)ᵀ ∈ RN and N-dimensional pro-

cesses X ∼ NTSOU(α, θ, µ, β, σ, R).

wTX(t) = µ̄t+ β̄(T (t)− t) +

∫ T (t)

0

σ̄(s)dW (s), t ≥ 0
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Then wTX ∼ NTSOU(α, θ, µ̄, β̄, σ̄, R)

µ̄ =
N∑
n=1

wnµn, β̄ =
N∑
n=1

wnβn, σ̄(t) =

√√√√ N∑
m=1

N∑
n=1

wmwnσmσnρm,n(t)

where (W (t))t≥0 is a Brownian motion.

This property significantly helps the analytical formula to be simple yet

effective as can be seen in the following sections (e.g. section 3.2, section

4) in the derivation of the equations.

3.1 Equivalent martingale measure

In this section, we change the NTS-OU processes into the risk-neutral

Q-measure with Girsanov’s theorem. We start with stating the theorem

by having a probability space (Ω,F ,P) and a random variable Z which is

nonnegative and E(Z) = 1.

Theorem 3.1 (Girsanov). Let B(t), 0 ≤ t ≤ T , be a Brownian motion on

a probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T be a filtration for this

Brownian motion. Let H(t), 0 ≤ t ≤ T be an adopted process. Define

Z(t) = exp

(
−
∫ t

0

H(u)dW (u)− 1

2

∫ t

0

H2(u)du

)
,

W (t) = B(t) +

∫ t

0

H(u)du,

and assume that

E

[∫ T

0

H2(u)Z2(u)du

]
<∞.

21



www.manaraa.com

Set Z = Z(t), then E(Z) = 1 and under the probability measure Q given by

Q(A) =

∫
A

Z(ω)dP (ω) for all A ∈ F ,

the process W (t), 0 ≤ t ≤ T , is a Brownian motion.

Now, let’s apply the theory to the multivariate NTS equation 3.1 with

stochastic correlation. In order to change the measure, we define a set of

two parameter vectors as λ = (λ1, λ2, · · · , λN) and β̂ = (β̂1, β̂2, · · · , β̂N)

that satisfies µ− β = λ− β̂. Along with this, we define an N -dimensional

process H(t) =
(
H1(t), H2(t), ..., HN(t)

)
that satisfies the following,

diag(σ)R1/2(T (t))H(t) = (β − β̂)
√
τ(t).

With λ, β̂ and H(t) the equation 3.1 becomes,

X(t) = λt+ β̂

∫ t

0

(τ(u)− 1)du

+ diag(σ)

(∫ t

0

R1/2(T (u))
√
τ(u)H(u)du+

∫ t

0

R1/2(T (u))
√
τ(u)dB(u)

)
.

By theorem 3.1, we have the Radon-Nikodym derivative

dQ
dP

= eΞ(T )− 1
2

[Ξ,Ξ](T ) for Ξ(t) = −
N∑
n=1

∫ t

0

Hn(s)dBn(s) (3.3)

and we also get a process W (t) as below that is a brownian motion under

Q-measure

W (t) = B(t) +

∫ t

0

H(u)du.

Now we summarize the equation with respect to the new Brownian motion
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W (t) as follows:

X(t) = λt+ β̂

∫ t

0

(τ(u)− 1)du+ diag(σ)

∫ t

0

R1/2(T (u))
√
τ(u)dW (u)

= λt+ β̂(T (t)− t) + diag(σ)

∫ t

0

R1/2(T (u))dW (T (u))

= λt+ β̂(T (t)− t) + diag(σ)

∫ T (t)

0

R1/2(u)dW (u).

X ∼ NTSOU

(
α, θ, λ, β̂, σ, R

)
under Q-measure with the new set of parame-

ters which is also reiterated and summarized into the following proposition.

Proposition 2. Suppose X ∼ NTSOU (α, θ, µ, β, σ, R) under measure P.

Let λ = (λ1, λ2, · · · , λN)ᵀ and β̂ = (β̂1, β̂2, · · · , β̂N)ᵀ be vectors satisfying

µ− β = λ− β̂. Then, there is an equivalent measure Q, such that

X ∼ NTSOU

(
α, θ, λ, β̂, σ, R

)
.

In this case, the Radon-Nikodym derivative is given by equation (3.3).

3.2 Bivariate case

In this section, we discuss a two-dimensional case in particular as the

application to the quanto option requires modeling the two following risk

factors: the exchange rate and the underlying asset. Here we derive the

characteristic function of the weighted sum of the two NTS-OU processes,

which is subsequently used for the option valuation via Fourier transform.

Let two-dimensional stochastic process follow the bivariate NTS-OU as,

X = (X1, X2)ᵀ ∼ NTSOU (α, θ, µ, β, σ, R) with parameters to be α ∈ (0, 2),
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θ > 0, µ = (µ1, µ2)ᵀ, β = (β1, β2)ᵀ, σ = (σ1, σ2)ᵀ, R = (R(t))t≥0 and

R(t) =

 1 ρ(t)

ρ(t) 1


where correlation ρ = (ρ(t))t≥0 is a time-dependent stochastic process

bounded in [−1, 1]. Then we have X(t) = (X1(t), X2(t))ᵀ with

X1(t)

X2(t)

 =

µ1

µ2

 t+

β1

β2

 (T (t)−t)+

σ1 0

0 σ2

∫ T (t)

0

 1 0

ρ(t)
√

1− ρ(t)2


dB1(t)

dB2(t)

 ,

where T is again the tempered stable subordinator, B = (B(t))t≥0 is the

independent two-dimensional Brownian motion, and B, T and ρ are mutu-

ally independent. For the variance and covariance for the two processes, by

(3.2), we have

(Xj(t)) = σ2
j t+ β2

j t

(
2− α

2θ

)
for j = 1, 2,

and

cov(X1(t), X2(t)) = σ1σ2E

[∫ T (t)

0

ρ(s)ds

]
+ β1β2t

(
2− α

2θ

)
.

It is important to reemphasize here that as described in Proposition

1, the weighted sum of the NTS-OU is again the NTS-OU process. This

is an important feature in our quanto option pricing scheme which can be

used to change to a one-dimensional NTS-OU process as follows. For the

bivariate weighted sum, let Z(t) = w1X1(t) + w2X2(t), then the mean and
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the variance can be written as

E[Z(t)] = w1µ1 + w2µ2,

Var(Z(t)) = (w2
1σ

2
1 + w2

2σ
2
2)t+ (w2

1β
2
1 + w2

2β
2
2 + 2w1w2β1β2)t

(
2− α

2θ

)
+ 2w1w2σ1σ2E

[∫ T (t)

0

ρ(s)ds

]
.

(3.4)

Hence, Z(t) is the NTS-OU process with

Z(t) = µ̄t+ β̄(T (t)− t) +

∫ T (t)

0

σ̄(s)dW (s),

where µ̄ = w1µ1 + w2µ2, β̄ = w1β1 + w2β2, and

σ̄(s) =
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ(s).

As we now have the description of the weighted sum of the two NTS-

OU processes, the characteristic function needs to be derived in order to

price the option with inverse Fourier transform. Let Fρ(t) be the σ-algebra

generated by {ρ(s)|0 ≤ s ≤ t} then the characteristic function of Z(t) is
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given by

φZ(t)(u) = E
[
E
[
E[exp(iuZ(t))|Fρ(t)]|T (t)

]]
= E

[
E

[
exp

(
iu
(
µ̄t+ β̄(T (t)− t)

)
− u2

2

∫ T (t)

0

σ̄(s)2ds

)
|T (t)

]]

= E

[
E

[
exp

(
iu
(
µ̄t+ β̄(T (t)− t)

)
− u2

2

(
w2

1σ
2
1 + w2

2σ
2
2

)
T (t)

− u2

2
2

∫ T (t)

0

w1w2σ1σ2ρ(s)ds|T (t)

]]

= exp(iu(µ̄− β̄)t)E

exp

i(uβ̄ +
iu2

2

(
w2

1σ
2
1 + w2

2σ
2
2

))
T (t)




E

E
exp

(
−u

2

2
2

∫ T (t)

0

w1w2σ1σ2ρ(s)ds

)
|T (t)




= exp(iu(µ̄− β̄)t)φτ(t)

(
uβ̄ +

iu2

2

(
w2

1σ
2
1 + w2

2σ
2
2

))

E

exp

(
−u2w1w2σ1σ2

∫ T (t)

0

ρ(s)ds

) .
For convenience, we define a process (I(ρ, t))t≥0 as I(ρ, t) =

∫ t
0
ρ(s)ds

and let φI(ρ,t)(u) be the characteristic function of I(ρ, t), then we can sum-

marize as

φZ(t)(u) = exp(iu(µ̄− β̄)t)φτ(t)

(
uβ̄ +

iu2

2

(
w2

1σ
2
1 + w2

2σ
2
2

))
E
[
φI(ρ,T (t))(iu

2w1w2σ1σ2)
]
.

(3.5)
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4 Quanto option pricing

We finally describe the derivation of the NTS-OU model where the

complete specification of the modeling components, as well as the closed-

form solution under the risk-neutral measure, are presented. We start this

section by describing the previous quanto option pricing model: the NTS

with constant correlation introduced by Kim et al. (2015). The NTS model

is presented as a comparison model, which is also used in the numerical

comparison section 5.

A quanto option is a European option where the payoff at expiry is

converted at a pre-specified exchange rate to its corresponding currency.

i.e. denoting Ffix to be the fixed exchange rate, S(T ) to be the underlying

asset price in the specified foreign currency at expiry T, and K to be the

strike, the quanto option payoff is,

Ffix(S(T )−K)+.

Compared to a standard vanilla option, the quanto option introduces foreign

exchange rate as an additional risk factor where the dependence structure

of the underlying asset and the exchange rate is important for the valuation

of quanto options.

Here, we introduce some notations to value quanto options. We denote

rd and rf to be the interest rate for the domestic and foreign currency,

respectively. Then, let (S(t))t≥0 be the price process for the asset in foreign

currency, (V (t))t≥0 the price process of the asset in domestic currency, and

(F (t))t≥0 the exchange rate process of the foreign currency with respect to

the domestic currency i.e. S(t) = V (t)/F (t).
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4.1 Black-Scholes quanto option pricing

Let’s follow the notation and assume that V (t) and F (t) follows

V (t) = V (0)exp(µXt+ σXWX(t)),

and

F (t) = F (0)exp(µXt+ σYWY (t)),

where (WX(t))t≥0 and (WY (t))t≥0 are Brownian motions with correlation

being a constant ρ. To simplify the model, we assume that WY (t) =

ρWX(t) + ρ̄ + W̄Y (t), ρ̄ =
√

1− ρ2 and that WX(t) and W̄Y (t) are all in-

dependent to each other. By using Girsanov theorem to find a risk-neutral

measure Q, which makes exp(−rdt)V (t) and exp(−(rd − rf )t)F (t) become

martingales, we need to assume the risk of market price as the following

λ1 =
1

σX

(
µX +

1

2
σ2
X − rd

)
,

λ2 =
ρ

σX ρ̄

(
−µX −

1

2
σ2
X + rd

)
+

1

σY ρ̄

(
µY +

1

2
σ2
Y − rd + rf

)
.

Let’s set W̄X(t) and ˜̄WY (t) to be

W̃X(t) = λ1t+WX(t),

and

˜̄WY (t) = λ2t+WY (t),

respectively. Based on the theorem, there exists an equivalent measure Q,

such that (W̃X(t)t≥0), ( ˜̄WY (t)t≥0) are independent Brownian motions under
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Q. Now we have the followings:

V (t) = V (0)exp

(
rdt−

σ2
X

2
t+ σXW̃X(t)

)
,

F (t) = F (0)exp

(
(rd − rf )t−

σ2
Y

2
t+ σY ρW̃X(t) + σY ρ̄

˜̄WY (t)

)
.

Since S(t) = V (t)/F (t) we can easily derive its equation,

S(t) = S(0)exp

(
rf t−

1

2
(σ2

X − σ2
Y )t+ (σX − σY ρ)W̃X(t)− σY ρ̄ ˜̄WY (t)

)
.

Now, let σ2 = σ2
X − 2σXσY ρ+σ2

Y and (W (t))t≥0 be a Brownian motion

independent to (W̃X(t))t≥0 and ( ˜̄WY (t))t≥0 under risk-neutral measure Q.

The process then becomes ((σX − σY ρ)W̃X(t)− σY ρ̄ ˜̄WY (t))t≥0 the same as

the process (σW (t))t≥0 in L2,

S(t) = S(0)exp

(
rf t−

1

2
(σ2

X − σ2
Y )t+ (t)

)
= S(0)exp

(
rf t+ (σ2

Y − σXσY ρ)t− σ2

2
t+ σW (t)

)
.

Let’s recall that the payoff function of a quanto option is Ffix(S(T )−

K)+, where Ffix is a given exchange rate in the contract. Let (Ft)t≥0 be the

filtration. By the Black-Scholes formula, the price of a quanto call option,

c, at time t is

c = e−rd(T−t)EQ[Ffix(S(T )−K)+|Ft]

= Ffix

(
e(rf−rd+σ@

Y −ρσXσY )(T−t)S(t)N(d1)− e−rd(T−t)KN(d2)
)
,
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where

d1 =
(rf + σ2

Y − ρσXσY )(T − t) + log(S(t)/K)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

and N(·) is a cumulative standard normal distribution function. By follow-

ing the same process the quanto put option price becomes

p = e−rd(T−t)EQ[Ffix(K − S(T ))+|Ft]

= Ffix

(
e−rd(T−t)KN(−d2) − e(rf−rd+σ2

Y −ρσXσY )(T−t)S(t)N(−d1)
)
.

4.2 NTS quanto option pricing with constant corre-

lation

We recap the pricing model for quanto option with the NTS process,

assuming constant correlation. We present the derived analytical formula

so that it can be compared to our approach in the next section (4.3)

with stochastic correlation. For the underlying processes, we assume that

(V (t))t≥0 and (F (t))t≥0 are given by

V (t) = V (0) exp
(
µXt+X(t)

)
,

F (t) = F (0) exp
(
µY t+ Y (t)

)
,

(4.1)

where the NTS process X(t) and Y (t) are following the bivariate processes

under physical measure P,

X
Y

 ∼ NTS2

α, θ,
0

0

 ,

βX
βY

 ,

σX
σY

 ,

1 ρ

ρ 1


 .
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The goal is to convert these processes into risk-neutral measure and

eventually calculate the characteristic function under risk-neutral measure

for the asset price denoted in foreign currency, i.e. S(t) in our notation.

We do so by applying the Theorem 3.1 (Girsanov). The detailed derivation

of risk-neutral measure can be seen in reference Kim et al. (2015) where

we present a summary of the approach and its results here. We derive it

with the condition that discounted price processes for V̂ (t) = e−rdtV (t) and

F̂ (t) = e−(rd+rf )tF (t) are martingales under Q-measure i.e.:

EQ[V̂ (t)] = V (0),

EQ[F̂ (t)] = F (0),

these conditions lead to λ∗ satisfying

λ∗X < θ − βX −
σ2
X

2
and λ∗Y < θ − βY −

σ2
Y

2
,

µX − rd + wX(λ∗X) = 0 and µY − rd + rf + wY (λ∗Y ) = 0,

where wX(λ∗X) = logEQλ∗ [e
X(1)] and wY (λ∗Y ) = logEQλ∗ [e

Y (1)]. Then there

exist an equivalent martingale measure Q under which

V (t) = V (0)exp((rd − wX(λ∗X)t+X(t)),

F (t) = F (0)exp((rd − rf − wY (λ∗Y )t+ Y (t)),

for t ≥ 0 which subsequently means

S(t) = S(0)exp((rf − w(λ∗X) + w(λ∗Y ))t+ Z(t)),
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where Z(t) = X(t)− Y (t). By proposition 1, Z(t) follows the NTS process

with the following parameters, i.e, Z ∼ NTS1(α, θ, γZ , βZ , σZ,1) where the

parameters are γZ = λ∗X − λ∗Y , βZ = βX + λ∗z − βY − λ∗Y and finally σZ =√
(σ2

X + σ2
Y − 2σXσY ρ). With these parameters following one-dimensional

NTS, we can get the characteristic function directly from equation 2.10:

φZ(t)(u) = exp

(
−(βX − βY )iut− 2tθ1−α

2

α

((
θ − i(βX + λ∗X − βY − λ∗Y )u

+
u2

2
(σ2

X + σ2
Y − 2σXσY ρ)

)α
2

−θ
α
2

))
.

With the derived characteristic function, we can price the quanto option

with the use of general European option pricing (Theorem 4.1): Let T ≥ 0

then the quanto call option price is

CQuanto
t (K,T ) = exp(−rd(T − t))EQ [Ffix(S(T )−K)+|Ft

]
=

e−rd(T−t)FfixK1+ξ

2πS(t)ξeξ(rf−wX(λ∗X)+wY (λ∗Y ))(T−t)G(
1

2π
log(

K

S(t)
)),

(4.2)

where Ft is a filtration and

G(x) =

∫
e−2πiux e

iu(rf−wX(λ∗X)+wY (λ∗Y ))(T−t)

(iu− ξ − 1)(iu− ξ)
E[e(iu−ξ)Z(T−t)]du,

with Z = X − Y and ξ ∈ R.
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4.3 NTS quanto option pricing with stochastic corre-

lation

We follow the notation and the framework setup in the previous section

4.2. Let’s assume (4.1) for the underlying dynamics of the quanto option

and model them via bivariate NTS processes with stochastic correlations.

(X, Y ) ∼ NTSOU

α, θ,
 0

0

 ,

 βX

βY

 ,

 σX

σY

 ,

 1 ρ(t)

ρ(t) 1


t≥0

 ,

with a bounded stochastic process ρ = (ρ(t))t≥0 under the physical measure

P. Similarly, as the previous model discussed in section 4.2, the next step is

to find the risk-neutral measure for pricing. Together with, λ∗ = (λ∗X , λ
∗
Y )ᵀ,

and by Proposition 2, we can find its unique equivalent martingale measure

Qλ∗ ,

(X, Y ) ∼ NTSOU

α, θ,
 λ∗X

λ∗Y

 ,

 βX + λ∗X

βY + λ∗Y

 ,

 σX

σY

 ,

 1 ρ(t)

ρ(t) 1


t≥0

 .

We calculate the risk-neutral measure as follows. With the changed

measure, the discounted price processes becomes martingale, i.e. EQλ∗

[
Ṽ (t)

]
=

V (0) andEQλ∗

[
F̃ (t)

]
= F (0) where Ṽ (t) = e−rdtV (t) and F̃ (t) = e(−rd+rf )tF (t).

This is equivalent toEQλ∗

[
eX(t)

]
= e−(µX−rd)t, and EQλ∗

[
eY (t)

]
= e−(µY −rd+rf )t.

Hence, this implies λ∗ has to satisfy the following two conditions:

Condition 1: λ∗X < θ−βX−
σ2
X

2
and λ∗Y < θ−βY −

σ2
Y

2
so that EQλ∗

[
eX(t)

]
and EQλ∗

[
eY (t)

]
exist.
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Condition 2: µX − rd +w(λ∗X) = 0 and µY − rd + rf +w(λ∗Y ) = 0, where

w(λ∗X) = logEQλ∗

[
eX(1)

]
= −βX −

2θ1−α
2

α

(θ − βX − λ∗X − σ2
X

2

)α
2

− θ
α
2

 ,

w(λ∗Y ) = logEQλ∗

[
eY (1)

]
= −βY −

2θ1−α
2

α

(θ − βY − λ∗Y − σ2
Y

2

)α
2

− θ
α
2

 .

Since we have µX = rd−w(λ∗X) and µY = rd− rf −w(λ∗Y ), dynamics under

the risk-neutral measure becomes the following:

V (t) = V (0) exp
(
(rd − w(λ∗X))t+X(t)

)
,

F (t) = F (0) exp
(
(rd − rf − w(λ∗Y ))t+ Y (t)

)
.

As now we found the dynamics of V (t) and F (t) under the new risk-

neutral measure, the asset price in foreign currency S(t) can be formulated

as below.

S(t) =
V (t)

F (t)
= S(0) exp

((
rf − w(λ∗X) + w(λ∗Y )

)
t+ Z(t)

)
, (4.3)

where Z(t) = X(t)− Y (t), with measure Qλ∗ . We apply the Proposition 1

again, where we now have the weights of w = (1,−1)ᵀ, for Z = (Z(t))t≥0:

Z(t) = λZt+ βZ(T (t)− t) +

∫ T (t)

0

σZ(s)dW (s), t ≥ 0.

Here, the parameters have changed as follows; λZ = λ∗X − λ∗Y , βZ = βX +

λ∗X − βY − λ∗Y , and σZ(t) =
√
σ2
X + σ2

Y − 2σXσY ρ(t). (W (t))t≥0 is an one-

dimensional Brownian motion independent of ρ and T . Now we can get

the characteristic function of Z(t) with the given parameters and equation

34



www.manaraa.com

(3.5) which is

φZ(t)(u) = exp(iu(λZ − βZ)t)φτ(t)

(
uβZ +

iu2

2

(
σ2
X + σ2

Y

))
E
[
φI(ρ,T (t))(−iu2σXσY )

]
.

(4.4)

With the dynamics of the price process S(t) in (4.3) and the character-

istic function of Z(t), we find the general European option pricing formula

given in Lewis (2001) to price the quanto option. Then, we utilize an inverse

Fourier transform to calculate the price numerically.

Theorem 4.1. Let h(x) be a payoff function of a given European option

with x = logS(T ) and ĥ(ξ) =
∫∞
−∞ e

−iξxh(x)dx. Suppose ĥ(ξ) is defined

for all ξ ∈ Rh = {z ∈ C : Im(z) ∈ Ih}, for some open interval Ih. The

driving process (U(T ))t≥0, with U(t) = lnS(t), is a Lévy process, such that

a characteristic function φU(T−t)(u) of U(T − t) is defined for all ξ ∈ Rφ =

{z ∈ C : Im(z) ∈ Iφ}, for some open interval Iφ. Then, the European option

price C(t) at time t is determined by

C(t)=
e−rd(T−t)

2π

∫ ∞
−∞

(S(t))i(u+iζ)φU(T−t)(u+ iζ)ĥ(u+ iζ)du, ζ ∈ Ih ∩ Iφ.

(4.5)

We layout the components of the above equation (4.5). Firstly, the

payoff function of the quanto option is Ffix(S(T )−K)+, thus we rewrite it

to be

h(x) = Ffix(e
x −K)+ and ĥ(ξ) = −FfixK1−iξ/ξ(ξ + i). (4.6)

ĥ(ξ) is well defined for ξ ∈ {z ∈ C : Im(z) ∈ Ih = (−∞,−1)}. In order to

get the characteristic function of U(T − t), i.e. φU(T−t), by (4.3) and (4.4),
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we have

U(t) = µ̄Zt+ βZ(T (t)− t) +

∫ T (t)

0

σZ(s)dW (s), t ≥ 0,

where µ̄Z = rf − w(λ∗X) + w(λ∗Y ) + λ∗X − λ∗Y . Since

U(T − t) =
(
rf − w(λ∗X) + w(λ∗Y )

)
(T − t) + Z(T − t), (4.7)

the characteristic function of U(T − t) becomes

φU(T−t)(ξ)=eiξ(rf−w(λ∗X)+w(λ∗Y ))(T−t)φZ(T−t)(ξ). (4.8)

Note that both functions φU(T−t)(ξ) and φZ(T−t)(ξ) are well defined for ξ ∈

{z ∈ C: Im(z) ∈ IφZ
}

with

IφZ =

[
− 1

σ2
Z

(
βZ +

√
β2
Z + 2σ2

Zθ

)
,

1

σ2
Z

(√
β2
Z + 2σ2

Zθ − βZ
)]

.

By Theorem 4.1, for a given strike K and maturity T , the European

quanto call price is

CK,T (t) =
e−rd(T−t)

2π

∫ ∞
−∞

(S(t))i(u+iζ)FfixK
1−i(u+iζ)φU(T−t)(u+ iζ)

(−1)(u+ iζ)(u+ i(ζ + 1))
du, (4.9)

with ζ ∈
[
− 1
σ2
Z

(
βZ+

√
β2
Z+2σ2

Zθ
)
,−1

]
, given 1

σ2
Z

(
βZ +

√
β2
Z + 2σ2

Zθ
)
>

1.

Following the same process, we can derive a pricing formula for a Eu-

ropean quanto put option for ζ ∈
[
0, 1

σ2
Z

(√
β2
Z + 2σ2

Zθ − βZ
)]

. Also, the

integral in (4.9) can be calculated via FFT to effectively calculate the price.

We show the calculation process in the empirical section.
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As the pricing formula based on the bivariate NTS process with the

stochastic correlation is given, we specify the OU process that we choose

for the stochastic correlation. More specifically, this will change the quanto

option pricing formula by determining E
[
φI(ρ,T (t))(−iu2σXσY )

]
in the the

equation (4.4) and eventually φU(T−t) in the final pricing formula (4.9).

Let’s recall that we defined (I(ρ, t))t≥0 as I(ρ, t) =
∫ t

0
ρ(s)ds. Now,

our model of choice for the correlation (ρ(t))t≥0 over time is the Ornstein-

Uhlenbeck (OU) Process as follows:

dρ(t) = −κOUρ(t)dt+ σOUdW (t).

The solution of the above OU process is

ρ(t) = ρ(0)e−κOU t + σOU

∫ t

0

e−κOU (t−s)dW (s). (4.10)

Moreover, I(ρ, t) =
∫ t

0
ρ(s)ds follows the normal distribution with the mean

E

(∫ t

0

ρ(s)ds

)
= ρ(0)D(t),

and the variance

var

(∫ t

0

ρ(s)ds

)
=
σ2
OU

κ2
OU

(
t−D(t)− κOU

2
(D(t))2

)
,

where

D(t) =
1− e−κOU t

κOU
.

Finally, the characteristic function of I(ρ, t) is equal to
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φI(ρ,t)(u) := E

exp

(
iu

∫ t

0

ρ(s)ds

)
= exp

iuE(∫ t

0

ρ(s)ds

)
− u2

2
var

(∫ t

0

ρ(s)ds

)
= exp

(
iuρ(0)D(t)− u2σ2

OU

2κ2
OU

(
t−D(t)− κOU

2
(D(t))2

))
.

(4.11)

By plugging (4.11) into equation (4.4), we can get the φU(t) which in turn

completes the analytical pricing formula in equation (4.9).

5 Empirical application

The main purpose of this section is to demonstrate that the NTS-OU

enhances performance in pricing quanto options. To analyze the perfor-

mance of our model, we conduct experiments on the two quanto option

contracts and compare the NTS-OU performance with the BS model and

the NTS model with constant correlation. The two quanto contracts are

the following: a contract on the S&P 500 index option with the EUR-USD

exchange rate, and a contract on the DJIA option with the Bitcoin-USD

exchange rate.

The first quanto option is designed to evaluate the model performance

when the correlation is mostly staying positive due to macroeconomic causal-

ity. On the other hand, the latter quanto example is to assess the perfor-

mance in a case where the historical correlation often fluctuates around zero
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and spikes when the market in distress. By conducting the calibration in

two different market regimes, we show that the performance of the NTS-OU

model works well in general cases.

We first present the statistical summary of the underlying dynamics.

The return distribution of each underlying asset and the historical rolling

correlation between the underlying assets are analyzed by the marginal

distribution plots, the Quantile-Quantile (Q-Q) plots, and the Kolmogorov-

Smirnov (KS) test. At this level, we show that the NTS is the best-fitted

process for the empirical data, and the OU process is a proper assumption

to describe the stochastic correlation.

Then, we calibrate risk-neutral parameters under the BS model and

NTS model, and the NTS-OU model for ten trading days in 2019. The

goodness-of-fit test was performed on the calibrated parameters: average

absolute error (AAE), the average absolute error as a percentage of the

mean price (APE), and the root mean square error (RMSE) are reported

in favor of the NTS-OU model. A term-structure on one specific trading

date with multiple expiries is provided as well.

In our notation, V (t) is the dollar valued price process of SPX (or

DJIA), S(t) is the EUR (or BTC) valued price process and F (x) is the

exchange rate process.

5.1 A quanto option on the S&P 500 index and the

EUR-USD

In this experiment, we investigate the quanto option of the S&P 500

index and the EUR-USD exchange rate as underlying assets. We use data

over a period from January 2015 to June 2020. For parameter calibration,
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data of ten trading dates in August 2019 is used.

5.1.1 In sample test: fitting the S&P 500 and the EUR-USD

The basic statistical summary of the daily log-return distribution is

shown in Table 1 on the aforementioned timeframe. We note that the high

kurtosis, 20.8514 for S&P 500 and 5.6368 for EUR-USD, are well over 3 (the

normal distribution case) and it indicates a strong leptokurtic nature for

both underlying assets. The normal distribution is not capable of explaining

such high kurtosis, so the assumption of the normal distribution in the BS

model is clearly rejected on the empirical grounds.

S&P 500 EUR-USD
Mean 3.1688 ×10−04 -4.9179 ×10−05

Standard Deviation 0.0125 0.0053
Skewness -0.9548 -0.0394
Kurtosis 20.8514 5.6368
Q.01 -0.1034 -0.0269
Q.05 -0.0482 -0.0173
Q.1 -0.0342 -0.0142
Q.5 -0.0178 -0.0081
Q.95 0.0156 0.0086
Q.99 0.0309 0.0139
Q.995 0.0470 0.0155
Q.999 0.0889 0.0226

Table 1: Summary statistics for daily log-returns of the S&P 500 and the
EUR-USD exchange rate from January 2015 to June 2020. The high kur-
tosis well exceeding over 3 (the normal distribution case) shows that the
empirical density is substantially leptokurtotic.

The skewness and the heavy tails of the underlying assets can be more

clearly observed in the density distribution and the Q-Q plots as displayed

in Figure 2. In line with the previous summary statistics, there is an ev-

ident contrast between the NTS distribution and the normal distribution.
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The NTS distribution traces the empirical return distribution closely with

its flexible shape, whereas the fixed shape parameters of the normal distri-

bution don’t capture it well. The Q-Q plot also displays the poor fits of the

normal distribution in the both tails area in particular, whereas the NTS

distribution displays a better fit in all areas.

5.1.2 The Kolmogorov Smirnov (KS) test

The Kolmogorov-Smirnov (KS) test is used to quantify the fitted quality

of all three candidate distributions - the NTS distribution, the Student’s

t distribution, and the normal distribution. This particular goodness-of-fit

property is defined as

KS = sup
x
|F̂ (x)− F (x)|,

where F̂ (x) is the real sample distribution and F (x) is the estimated dis-

tribution by the hypothesized distribution.

This non-parametric test is known to have a shortcoming of rejecting

the null hypothesis when extremely large data is used. Hence, we controlled

the number of observations to be 1382, from January 2015 to June 2020.

The KS statistics and its corresponding p-value is presented in Table 2. The

null hypothesis that the sample is drawn from the reference distribution is

soundly rejected for the normal distribution at the significance level of 5%.

For the Student’s t and the NTS distributions, the null hypothesis is not

rejected where the NTS shows a higher p-value than the Student’s t in both

the S&P 500 and the EUR-USD, suggesting the best fits for all candidate

distributions.
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Figure 2: The log-return density distribution (left) and the Q-Q plot (right)
for both the S&P 500 index and the EUR-USD. The NTS distribution and
the normal distribution are fitted. The empirical density shows the lep-
tokurtic nature, but the Normal distribution cannot capture the peaked-
ness of the density distribution for both underlying assets. In the Q-Q
plots, the normal distribution fits well around the center whereas the fit
becomes poorer in the tails. The NTS distribution shows a better fit on all
plots.
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S&P 500 EUR-USD
Distribution KS Statistics p-value KS Statistics p-value
Normal 0.1056 0.0001 0.0469 0.0034
Student’s t 0.023 0.422 0.0169 0.7993
NTS 0.0072 0.9997 0.0056 0.9921

Table 2: p-values of the KS test for three candidate distribution in the S$P
500 and the EUR-USD at 5% of the significance level. The NTS strongly
beats the other candidates the normal and the Student’s t.

5.1.3 Stochastic Correlation between the S&P 500 and the EUR-

USD

The main objective of the NTS-OU model is to include the stochastic

correlation feature in the quanto option pricing. Observing the stochastic

correlation presented in the historical data gives us additional confidence

in modeling this feature.

Figure 3 shows the moving correlation with three different windows:

30 days, 60 days and 90 days. It is evident that the correlation between

the S&P 500 and the EUR-USD is varying significantly over time. As the

observation of Figure 3 confirms, assuming the correlation between assets

as a constant is erroneous and it may return the bad price estimates when

the market is in volatile times particularly. In fact, it is a well-documented

fact that (1) the correlation on the multivariate financial assets is time-

varying (see Patton (2006)), and (2) the correlation is more unstable than

the volatility (see Ma (2009)). In the following calibration test, we will show

that the NTS-OU model considering the stochastic correlation returns the

best estimates than the previous models.
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Figure 3: Illustration of the historical rolling correlation between the S&P
500 and the EUR-USD returns over the period of January 2015 and June
2020.

5.1.4 Calibration to the quanto option

Given the strong empirical support for the NTS-OU model as presented

in the previous sections, we now expect to see an improved estimate of the

quanto option price. To show this enhanced performance of the NTS-OU,

we conduct the parameter calibration for all three models: the NTS-OU,

the BS, and the NTS with constant correlation.

The assessment has the following steps. Since there are limited available

traded quanto option price data, we first proxy the data. Recall that the

full quanto option price is calculated with e−rd(T−t)FfixEQ[(S(T )−K)+|Ft]

and e−rd(T−t)FfixEQ[(K − S(T ))+|Ft] for call and put, respectively. The

parts EQ[(S(T ) −K)+|Ft] and EQ[(K − S(T ))+|Ft] are replaced with the

market price of SPX call and put options. After the previous data proxy

step, we calibrate risk-neutral parameters to both put and call option price

data on 10 selected trading dates. This is conducted by the least-squares

minimization of the distance between data and theoretical quanto prices
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from the models. Note that the calibration is performed on a set of option

prices with all different strike K on a given trading day. The expiry date

is chosen to be the closest available date to three months from the trading

date.

The estimated prices of both call and put quanto options on August

5, 2019 are illustrated in Figure 4 as a sample. The price from all three

comparison models and the proxy market data are plotted together against

the different strikes. It is visually evident that the NTS-OU is the most

flexible model that display the closest to the proxy-quanto option price for

a wide range of strike prices. This is because NTS-OU is the only model

that is capable of capturing the heavy tails, the skewness as well as the

stochastic correlation.

The calibrated parameters for all the three models are summarized in

Table 3 and its goodness-of-fit test result is presented in 4. For the BS

model, we estimate σ1, σ2, and ρ2, and for the NTS, we calibrate α, θ,

λZ , βZ , σ1, σ2, ρ and µZ where Z(t) = X(t) − Y (t) in our notation3. The

NTS-OU, as described previously, the OU parameters θOU , σOU , κOU
4are

added to the NTS parameter list. Note that, as we remarked before, we

fixed the long-term mean θOU to be zero for the calibration stability.

At a glance, we find that the OU parameters are significantly different

from zero, indicating that added flexibility in the correlation dynamics en-

ables the better-fitted option price in the risk-neutral space. Also, all of the

2σ1 is the standard deviations for the S&P 500 index, σ2 is the standard deviations
for the exchange rate and ρ is the correlation between two underlyg assets.

3α represent fat-tailedness and peakedness, and jump intensity. θ means the ’temper-
ing’ parameter for the subordinator. λ is the drift term. β is the skewness parameter,
and σ presents the scale parameter. ρ means the dependency between the underlying
dynamics.

4θOU is the mean of the fundamental process, σOU is the volatility, and κOU is the
speed to reverts towards the mean.
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calibrated α is far below 2 which means the substantial fat-tailedness and

the skewness appeared on this quanto option dynamics.
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Date Model α θ λZ βZ σ1 σ2 µZ ρ0 σOU κOU
05-Aug-2019 BS 0.7762 0.6258 0.9965

NTS 0.0001 1.9557 -0.0052 0.1790 0.1502 0.0906 0.0005
NTS-OU 0.2549 2.1592 0.0018 0.3702 0.0735 0.0735 0.0002 0.2416 2.6914 13.4179

08-Aug-2019 BS 0.7434 0.6113 1.0000
NTS 1.3372 0.1143 0.0052 0.0810 0.1508 0.0908 -0.0005

NTS-OU 1.3198 1.5552 -0.0173 0.3664 0.1268 0.0379 0.0018 0.9999 0.0000 0.6678

13-Aug-2019 BS 0.7313 0.5936 1.0000
NTS 0.0001 1.6484 -0.0191 0.1422 0.1186 0.0756 -0.0029

NTS-OU 0.5193 1.4461 -0.0104 0.2750 0.0668 0.0669 0.0010 0.0423 3.7562 15.0887

15-Aug-2019 BS 0.7185 0.5601 1.0000
NTS 0.0001 2.7481 -0.0070 0.1561 0.1512 0.09309 0.0008

NTS-OU 1.3978 3.33E-05 -0.0045 0.5329 0.0010 0.1088 0.0004 -0.2119 -0.2855 2.3407

21-Aug-2019 BS 0.7390 0.6099 0.9993
NTS 1.3866 0.0986 0.0054 0.0660 0.1519 0.0905 -0.0005

NTS-OU 1.0706 4.6120 -0.0095 0.4499 0.0760 0.0695 0.0010 0.7028 3.3230 9.3295

23-Aug-2019 BS 0.6835 0.5340 0.9984
NTS 0.0001 1.9362 -0.0198 0.1310 0.1524 0.0905 0.0015

NTS-OU 1.2044 2.4331 -0.0209 0.5734 0.0010 0.0010 0.0016 0.0671 3.2780 14.1898

26-Aug-2019 BS 0.6744 0.5274 0.9998
NTS 0.0001 1.4247 -0.0156 0.1117 0.1524 0.0906 0.0016

NTS-OU 1.2211 1.6345 -0.0145 0.3698 0.1235 0.1235 0.0014 0.9999 0.0000 4.5280

27-Aug-2019 BS 0.7191 0.5702 0.9986
NTS 0.0001 1.5525 -0.0100 0.1321 0.1524 0.0906 0.0020

NTS-OU 0.2466 2.0911 -0.0044 0.3306 0.0709 0.0713 0.0014 0.2520 2.8400 14.1381

29-Aug-2019 BS 0.7119 0.5703 1.0000
NTS 0.0001 1.8116 -0.0089 0.1499 0.1336 0.0516 0.0071

NTS-OU 1.0114 1.3320 -0.0074 0.2917 0.1139 0.1138 0.0067 0.9999 0.0000 6.3784

30-Aug-2019 BS 0.7391 0.5966 1.0000
NTS 0.0001 1.8816 0.0020 0.1631 0.1186 0.0753 0.0126

NTS-OU 1.0114 1.3320 -0.0074 0.2917 0.1139 0.1138 0.0067 0.9999 0.0000 6.3784

Table 3: Calibrated risk-neutral parameters under the BS, the NTS and
the NTS-OU models for the S&P 500 and the EUR-USD quanto option.
Note that the estimated α is well below 2 which implies the heavy tails and
skewness in this quanto option dynamics.

To evaluate the performance of the three comparison models more

specifically, we calculated the three measures of the goodness-of-fit test:

AAE, APE, and RMSE 5. For all selected trading dates, the NTS-OU model

consistently reports the lowest value for all three measures with only a few

exceptions. On the other hand, the BS model underperforms for all mea-

sures and trading days. The order of performance of the three models

5The error estimators follows:
AAE(Average Absolute Error) =

∑N
j=1

|P̂j−Pj |
N

APE(Average Prediction Error) =
∑N

j=1 |P̂j−Pj |/N∑N
j=1 |P̂j |/N

RMSE(Root Mean - Square Error) =

√∑N
j=1

(P̂j−Pj)2

N
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Figure 4: Comparing the estimated prices for the quanto option of the SPX
and EUR-USD on August 5, 2019. The NTS-OU is the best performer,
followed by the NTS and then the BS.
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is evident based on the goodness-of-fit measures: NTS-OU, NTS, and BS.

Having discussed the goodness-of-fit test result, we conclude that the adding

the OU and NTS parameters to the BS model significantly contribute to the

accurate pricing estimation as the parameters reflect the empirical evidence.

The goodness-of-fit test result of the risk-neutral parameter calibra-

tion have another important implication on the risk-neutral world. As the

added OU parameters enhance the model performance, we can infer that

the stochastic correlation property exists in the risk-neutral world.

Now we offer the term structure in which model performance is esti-

mated with different expiries for one trading day. The selected trade date

is Aug 15th, 2019, and 30, 60, 90 days are considered as a time-to-maturity.

As can be seen in Figure 5, the NTS-OU has more flexibility to fit the

asymmetric shape of the option prices across multiple expirations. Based

on the RMSE, we can confirm again that the BS model (18.9876) clearly

underperforms for all strike prices. The NTS model (10.173) is the next

whereas the NTS-OU (6.4119) provides the best fitting capability.

5.2 A quanto option on the DJIA and the BTC-USD

Bitcoin is a new type of financial instrument that emerged as a cryp-

tocurrency in 2008 and gained popularity over recent years. The spirit

behind Bitcoin is creating a new decentralized currency that is independent

of any central banks or governments.

Since its inception, the unprecedented growth rate of Bitcoin is enough

to attract the market participants’ attention; between 2011 and 2015, Bit-

coin rose more than 9,000%, from $4.60 to $426; in another time frame of

April 27, 2015, to April 27, 2020, the price of Bitcoin went from $224 to
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Date Model RMSE AAE APE
05-Aug-2019 BS 9.3650 7.9902 0.2477

NTS 3.4094 2.5545 0.0792
NTS-OU 2.7870 2.1422 0.0664

08-Aug-2019 BS 8.6772 7.2288 0.3117
NTS 3.4306 2.7598 0.1190

NTS-OU 0.6912 0.5450 0.0235
13-Aug-2019 BS 9.3630 7.9459 0.3466

NTS 2.0207 1.2874 0.0562
NTS-OU 1.7385 1.3069 0.0570

15-Aug-2019 BS 18.9876 2.3157 6.3008
NTS 10.1730 1.5348 4.1765

NTS-OU 6.4119 1.5083 4.1037
21-Aug-2019 BS 7.2555 6.0643 0.3340

NTS 3.8922 3.1852 0.1754
NTS-OU 1.8426 1.4862 0.0819

23-Aug-2019 BS 8.1294 6.9202 0.3103
NTS 4.1080 2.9506 0.1323

NTS-OU 2.3988 1.8563 0.0832
26-Aug-2019 BS 8.8796 7.4992 0.2487

NTS 4.1750 3.1249 0.1036
NTS-OU 2.1491 1.7860 0.0592

27-Aug-2019 BS 8.9724 7.6249 0.2430
NTS 3.7909 2.8799 0.0918

NTS-OU 2.6298 2.0356 0.0649
29-Aug-2019 BS 9.0384 7.5591 0.2685

NTS 1.5280 1.0059 0.0357
NTS-OU 1.2946 1.0673 0.0379

30-Aug-2019 BS 9.5589 7.9193 0.2741
NTS 1.3027 0.8250 0.0286

NTS-OU 1.1596 0.9454 0.0327

Table 4: The goodness-of-fit test result for calibrated parameters shown in
Table 3. This test is performed on the selected ten trading days in August
2019 for the S&P 500 Index and the EUR-USD quanto options. The NTS-
OU consistently shows the lowest value on all test measures except for a
few cases, while the BS model comprehensively underperforms.
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$7,787.

However, as much as its profitability, its volatility has become a concern

for investors. As a double-digit variance of the return is frequently observed

in Bitcoin dynamics, Bitcoin is now considered as a high-risk asset. Indeed,

it is now a well-known fact that Bitcoin clearly displays heavier tails than

the market (see Kwon (2020)).

The other crucial factor to consider for Bitcoin derivatives pricing is

its correlation with the equity market. At first, Bitcoin was called ”digital

gold” due to its fundamental similarities to gold and independent move-

ment with the equity market. However, in recent years, whereas gold has

still exhibited a strong negative correlation with the equity market, Bit-

coin behavior has been more followed by the market trend. This contrast

movement is more noticeable during economic turmoil. In other words, the

dynamics of Bitcoin and the equity market are relatively low correlated

when the market is in a normal regime, upon the market downturn starts,

their correlation gauges up immediately.

In this example, we demonstrate the NTS-OU assumptions are effective

to capture the features of the Bitcoin movement. As we mentioned earlier,

this comes from the fact that Bitcoin has highly volatile returns with many

outliers observed in the historical data. In addition to that, being a cryp-

tocurrency, which is not tied to a particular government’s monetary policy,

makes the correlation less predictable in its pattern over time. Assuming

a positive or a negative constant for correlation could be an unrealistic as-

sumption as it often moves in a large degree and changes signs frequently.

A detailed description of its correlation pattern will be described in Section

5.2.3.

We built a synthetic quanto option with the BTC-USD as its exchange
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rate and DJIA to be the underlying index for this illustration and used the

data from January 2015 to June 2020. Similarly to the previous example, we

proxy the quanto option price by using the traded DJIA option prices (DIA).

Then the payoff is given with a predetermined Bitcoin price (in Satoshi

units). We follow the steps in previous sections to show that the NTS-OU

has a superior performance in both physical and risk-neutral measures.

5.2.1 In sample test: fitting the DJIA and the BTC-USD

Both DJIA and Bitcoin daily log-return distribution is significantly lep-

tokurtic with a large skew to the left, as indicated in its kurtosis and skew-

ness in Table 5. The kurtosis for the DJIA is 27.9564 and for the Bitcoin is

17.2957. Given the convention that the normal distribution uses a kurtosis

below 3, such a high kurtosis value could be challenging for other statistical

distributions to capture its shape.

DJIA Bitcoin
Mean 2.7389 ×10−04 0.0022
Standard Deviation 0.0125 0.0428
Skewness -1.1219 -1.1268
Kurtosis 27.9564 17.2957
Q.01 -0.1094 -0.2661
Q.05 -0.0469 -0.1688
Q.1 -0.0363 -0.1283
Q.5 -0.0177 -0.0630
Q.95 0.0147 0.0672
Q.99 0.0313 0.1184
Q.995 0.0483 0.1444
Q.999 0.0917 0.2159

Table 5: Summary statistics for daily log-returns of the DJIA and the
Bitcoin exchange rate from January 2015 to June 2020. The high kurtosis
value far exceeding 3 (the normal distribution case) gives us the confidence
to consider the NTS assumption.
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Figure 6: The log-return density distribution (left) and the Q-Q plot (right)
for both the DJIA and the BTC-USD. The NTS distribution and the nor-
mal distribution are fitted. The empirical density shows the leptokurtic, and
skewed nature. The Normal distribution does not account for the peaked-
ness of the density distribution for both underlying assets. In the Q-Q plots,
the NTS distribution shows a better fit than the normal distribution for all
quantiles.

This can be visually seen in Figure 6, where the shape of the DJIA

and the Bitcoin return distribution is hard to be described by the normal

distribution simply with its mean and variance. On the other hand, the

NTS is capable of tracking the return data closely. Both the fitted graph

and the Q-Q plots demonstrate that the NTS accounts for the high peak in

the middle as well as the heavier tails on both sides.
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5.2.2 The Kolmogorov Smirnov (KS) Test

The KS test statistics for three candidate distributions are presented

in Table 6 confirming that the NTS distribution calibrates successfully to

the historical return distribution based on the p-value. For the normal dis-

tribution, in particular, the DJIA and Bitcoin’s p-value of the KS statistics

are both 1.0−4, the null hypothesis is clearly rejected. On the other hand,

the NTS displays a stark contrast by showing a high p-value of 0.8938 and

0.9995 for the DJIA and Bitcoin respectively. Given that the Bitcoin move-

ments are volatile and have many outliers, it is not surprising that the NTS

displays the best performance in fitting the empirical return distribution.

DJIA Bitcoin
Distribution KS Statistics p-value KS Statistics p-value
Normal 0.1407 0.0001 0.1178 0.0001
Student’s t 0.0228 0.4367 0.0251 0.3157
NTS 0.0101 0.8938 0.0057 0.9995

Table 6: p-values of the KS test for three candidate distribution in the
DJIA and the BTC-USD at 5% of the significance level. The NTS displays
the high p-value of 0.8938 and 0.9995 for both the DJIA and the Bitcoin
movements whereas the normal assumption clearly fails to describe the
empirical distribution.

5.2.3 Stochastic Correlation between the DJIA and the BTC-

USD

As we remarked before, the correlation between Bitcoin and the DJIA

is an interesting case; they loosely correlate generally, but upon the market

regime switches, the correlation gauges up immediately. We can find this

pattern in Figure 7 and the 4 spikes in the historical rolling correlation

are directly related to the major market crashes; (1) June 2016: A major
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Figure 7: Historical rolling correlation between the DJIA and the BTC-USD
returns over the period of January 2015 and June 2020.

stock sell-off event caused by the Brexit announcement which George Soros

called, ”a Black Friday for Britain.” (2) January 2018: After a phenomenal

bull run in 2017, the Bitcoin price fell off 65% in one month, which is known

as the great crypto crash. (3) November 2018: The market capitalization

of Bitcoin decreased below $100 billion for the first time since October

2017 and Bitcoin price declined to $5,500. (4) February 2020: This is

a major stock market plunge caused by the COVID-19 outbreak. Major

drops in DJIA and S&P 500 were recorded and world stock markets declined

simultaneously out of the turmoil.

We ultimately show that capturing the stochastic correlation with the

relaxed assumption on the constant correlation does provide added perfor-

mance in the quanto option pricing under the risk-neutral measure.

5.2.4 Calibration to the quanto option

In this section, we present the calibration result with the goodness-of-

fit measures for all three candidate models. We follow the same calibration
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routine as described in the previous case study (see section 5.1.4), and use

ten selected trading days in August 2019. The experiments are conducted

with the DIA and the BTC-USD data.

Figure 8 shows that the fitting of three models to the proxy market

data on August 8, 2019. In this case, due to the limited data points of DIA,

the difference between the models is not much distinguishable. However,

we note that the NTS model exhibits slightly better estimates on the out-

of-the-money strikes. The performance of the NTS-OU model also can be

confirmed by the goodness-of-fit measure; the RMSE of the BS model is

5.5368 whereas the NTS-OU model is 4.9258 respectively. (see Table 8).

To describe the model performance in detail, the calibrated parameters

under the risk-neutral measures are provided in Table 7. The all estimated

α parameter is below 2 which implies the existence of the heavy tails and

the skewness in the underlying dynamics. Also, we can observe that the

OU parameters display a relatively high value which gives us confidence in

the capability of the OU parameters.

Moreover, as it can be consistently demonstrated in all three goodness

of fit measures shown in Table 8, the NTS with stochastic dependence has

more flexibility to calibrate to the market prices on selected nine trading

days in August 2019. AAE, APE, and RMSE all have lower values for the

NTS-OU compared to that of the NTS except for a few cases.

We also perform the same calibration and pricing performance testing

to multiple expiries to demonstrate the model’s flexibility in capturing the

term structure. In Figure 9, we selected the expiry of 30 days and 120

days and fit the model to the price data. The deep-in-the-money options

were removed. The term structure suggests NTS-OU has more adaptability

than the BS or the NTS with constant correlation and this observation is
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Figure 8: Comparing the estimated prices for the quanto option of the DIA
with BTC-USD on August 8, 2019. Due to the limited data points, the
difference between the NTS and the NTS-OU model is indistinguishable,
but we note that the BS model does not perform well around the out-of-
the-money strikes. The lower RMSE of the NTS-OU model (4.9258) than
the BS model (5.5368) supports this observation.
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Date Model α θ λZ βZ σ1 σ2 µZ ρ0 σOU κOU
05-Aug-2019 BS 0.1283 0.2042 0.6262

NTS 0.5920 2.3819 -0.0281 0.2152 0.1512 0.0931 0.0028
NTS-OU 0.6959 7.0222 -0.0111 0.2532 0.1485 0.0891 0.0011 -0.5891 2.4830 12.811

08-Aug-2019 BS 0.2238 0.1012 0.7847
NTS 0.6312 0.8274 -0.0170 0.0403 0.1508 0.0908 0.0017

NTS-OU 1.9012 8.2731 -0.0161 0.8061 0.0707 0.0663 0.0016 -0.3967 3.0990 11.0851

16-Aug-2019 BS 0.2308 0.1035 0.6984
NTS 0.7263 0.5895 -0.0148 0.0475 0.1186 0.0757 0.0015

NTS-OU 1.9530 8.3134 -0.0153 0.9111 0.0585 0.0554 0.0015 -0.3893 3.0982 11.0872

19-Aug-2019 BS 0.2255 0.1031 0.6977
NTS 0.8614 2.3498 -0.0119 0.1604 0.0983 0.0632 0.0012

NTS-OU 1.8874 9.5927 -0.0159 0.8433 0.0395 0.0347 0.0016 0.6865 3.3568 11.3882

20-Aug-2019 BS 0.2139 0.0893 0.7314
NTS 0.6478 0.8418 -0.0134 0.0430 0.1515 0.0903 0.0013

NTS-OU 1.8391 9.1712 -0.0162 0.3068 0.0879 0.0866 0.0016 0.9999 2.8940 11.7439

21-Aug-2019 BS 0.2230 0.0996 0.7858
NTS 0.4300 0.5422 -0.0172 0.0109 0.1519 0.0905 0.0017

NTS-OU 1.9182 9.1790 -0.0183 0.8845 0.0351 0.0212 0.0018 -0.2364 0.4304 12.3552

22-Aug-2019 BS 0.2235 0.0980 0.6994
NTS 0.6426 0.8374 -0.0162 0.0419 0.1515 0.0902 0.0016

NTS-OU 1.9459 9.3031 -0.0177 0.9298 0.0563 0.0541 0.0018 -0.0605 3.1438 13.2019

26-Aug-2019 BS 0.2573 0.1322 0.7773
NTS 0.6629 0.8505 -0.0166 0.0472 0.1524 0.0906 0.0017

NTS-OU 1.8713 9.5517 -0.0184 0.7822 0.0560 0.0339 0.0018 0.4611 0.1018 16.8824

27-Aug-2019 BS 0.2389 0.1009 0.7695
NTS 0.6696 0.8561 -0.0138 0.0475 0.1524 0.0906 0.0014

NTS-OU 1.8675 9.7971 -0.0172 0.8151 0.0773 0.0765 0.0017 0.9999 2.6241 12.6153

Table 7: Calibrated parameter comparison for the DJIA with Bitcoin
quanto options between BS, NTS and NTS-OU.

consistent with the result of the goodness-of-fit test.
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Date Model RMSE AAE (bp6) APE (%)
05-Aug-2019 BS 8.9876 2.3157 6.3008

NTS 5.0641 1.5348 4.1765
NTS-OU 4.6683 1.5083 4.1037

08-Aug-2019 BS 5.5368 4.5863 3.3023
NTS 1.8003 1.4018 1.2406

NTS-OU 4.9258 3.8356 3.3946
16-Aug-2019 BS 7.0598 2.0326 4.8581

NTS 4.4422 1.4505 3.4669
NTS-OU 4.3475 1.4265 3.4094

19-Aug-2019 BS 6.9423 2.0062 5.0348
NTS 3.2871 1.1909 2.9886

NTS-OU 3.1332 1.1907 2.9882
20-Aug-2019 BS 6.8902 2.0123 4.9955

NTS 4.7131 1.4260 3.5401
NTS-OU 3.5251 1.2756 3.1666

21-Aug-2019 BS 5.6648 1.8138 4.2243
NTS 5.0603 1.4871 3.4632

NTS-OU 3.5799 1.2941 3.0137
22-Aug-2019 BS 7.4126 2.0804 4.8343

NTS 5.3570 1.5183 3.5283
NTS-OU 3.4812 1.2709 2.9534

26-Aug-2019 BS 6.9941 5.3094 0.4021
NTS 1.5639 2.7305 0.2068

NTS-OU 1.4490 2.8554 0.2162
27-Aug-2019 BS 5.3545 1.7804 4.1850

NTS 5.4818 1.5694 3.6891
NTS-OU 4.4516 1.4889 3.4998

Table 8: Quanto option price goodness of fit for DJIA with Bitcoin, The
unit is in Bitcoin: RMSE, AAE, APE. Note that 05 August 2019 is run
with multiple expiries to capture the term structure. The NTS-OU model
shows the lowest RMSE, AAE, and APE with a few exceptions.
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6 Conclusion

A quanto option is traded in the over-the-counter market, so its price is

decided by the consent of both parties based on the term-sheet rather than

a market equilibrium. Hence, a robust theoretical model for its pricing is

essential. The motivation of this study begins with the idea of establishing

a more realistic pricing model that reflects the main empirical properties;

heavy tails, skewness, and the stochastic correlation.

In this study, we proposed the NTS-OU pricing model for quanto op-

tions by combining the OU process with the previous NTS framework. We

also found the risk-neutral measure by applying Girsanov’s Theorem. Build-

ing on this, we finally derived the closed-form solution for a quanto option

pricing model. For an effective numerical calculation, the characteristic

function is provided to be directly used for fast Fourier Transform.

In the empirical illustration, we test two empirical case studies to un-

derstand the model performance in different market environments. For both

case studies, across all selected trading dates, the NTS-OU model consis-

tently displayed a superior price estimation than the BS model and the NTS

model. This conclusion is supported by the statistical summary, multiple

goodness-of-fit metrics, and the term structure.

Meanwhile, it should be noted that the NTS-OU framework can be

applied to model multi-asset option pricing or generally any models that

have a stochastic correlation. A quanto option pricing is a bivariate exam-

ple of the NTS-OU framework, but it can be used for higher-dimensional

examples.

As the next subject, we can investigate the hedging strategy for the

NTS-OU quanto option model. Derivatives are utilized as a hedging tool
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for traders. The most challenging part for the NTS based model is deriving

a hedging strategy. The NTS process as one of a Lévy process allows jumps

and this is not deleted by delta hedging. Many alternatives are suggested

such as local risk-minimizing hedging by Boyarchenko et al. (2002) and this

can be applied for the NTS-OU model. This will be the subject of future

study.

Another subject regarding the NTS-OU model is investigating the trade-

off between flexibility by adding parameters and computational effective-

ness. Finding an optimal point between flexibility and accuracy would be

an important study for the application of the NTS-OU model.
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A Appendix

A.1 Calibration Results for Quanto Option of the S&P

500 Option and the EUR-USD Exchange Rate
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Figure 10: Quanto option pricing results - 05 August 2019
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Figure 11: Quanto option pricing results - 08 August 2019
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Figure 12: Quanto option pricing results - 13 August 2019
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Figure 13: Quanto option pricing results - 21 August 2019
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Figure 14: Quanto option pricing results - 23 August 2019
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Figure 15: Quanto option pricing results - 26 August 2019
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Figure 16: Quanto option pricing results - 27 August 2019
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Figure 17: Quanto option pricing results - 29 August 2019
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Figure 18: Quanto option pricing results - 30 August 2019
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A.2 Calibration Results for Quanto Option of the DJIA

Option and the BTC-USD Exchange Rate
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Figure 19: Quanto option pricing results - 08 August 2019
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Figure 20: Quanto option pricing results - 16 August 2019
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Figure 21: Quanto option pricing results - 19 August 2019
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Figure 22: Quanto option pricing results - 20 August 2019
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Figure 23: Quanto option pricing results - 21 August 2019
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Figure 24: Quanto option pricing results - 22 August 2019
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Figure 25: Quanto option pricing results - 26 August 2019
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Figure 26: Quanto option pricing results - 27 August 2019
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